
PARALLELIZATION OF MULTIMEDIA APPLICATIONS ON THE
MULTI-LEVEL COMPUTING ARCHITECTURE

Utku Aydonat and Tarek S. Abdelrahman
Department of Electrical and Computer Engineering

University of Toronto
{uaydonat,tsa}@eecg.toronto.edu

ABSTRACT
The Multi-Level Computing Architecture (MLCA) is a novel
parallel System-on-a-Chip architecture targeted for multi-
media applications. It features a top level controller that au-
tomatically extracts task level parallelism using techniques
similar to how instruction level parallelism is extracted by
superscalar processors. This allows the MLCA to support a
simple programming model that is similar to sequential pro-
gramming. In order to assist programmers to easily and effi-
ciently port multimedia applications to the MLCA program-
ming model, a compilation environment is designed. This
compilation environment enhances parallelism in MLCA
programs by applying three simple code transformations
that are based on known compiler optimizations. In this pa-
per, we describe the MLCA architecture, its programming
model, its compilation environment and an evaluation of its
performance. Our experimental evaluation with three real
multimedia applications and an MLCA simulator shows that
the MLCA is a viable architecture and scaling speedups can
be obtained using the compilation environment with little
programmer effort.

KEY WORDS
parallel-embedded systems; compiler optimizations, priva-
tization, parallelism enhancement.

1 Introduction

The Multi-Level Computer Architecture (MLCA) [1] is a
novel architecture for parallel systems-on-a-chip (SOCs). It
features multiple processing units and a top-level controller
that automatically exploits parallelism among coarse-grain
units of computation, called tasks, using techniques similar
to those used by superscalar processors for the extraction
of instruction-level parallelism. The MLCA supports a pro-
gramming model that is similar to sequential programming.
This model reduces programming effort, making the MLCA
an attractive architecture for multimedia and streaming ap-
plications.

However, naive transformation of multimedia applica-
tions to MLCA programs may result in limited parallelism
due to the use of pointers to aggregate data in shared mem-
ory. Thus, we design a compilation environment to alleviate
these performance problems and to assist programmers in
efficiently porting applications to the MLCA. For these pur-

poses, three simple transformations that are based on known
compiler optimizations are adopted for the MLCA program-
ming model.

In this paper, we describe the MLCA architecture, its
programming model, how naive transformation of applica-
tions to the MLCA can result in poor performance, the com-
piler optimizations we design to alleviate performance prob-
lems and the MLCA compilation environment used to en-
hance parallelism in MLCA programs. We evaluate the per-
formance of three realistic multimedia applications using a
simulator of the MLCA and a working prototype of the com-
piler environment. The evaluation indicates that the MLCA
is an effective and promising architecture, and the compi-
lation environment can deliver code whose performance is
comparable to that of manually optimized MLCA programs.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the MLCA and its program-
ming model. Section 3 motivates and illustrates the need
for our compiler support. Section 4 describes our proposed
compiler transformations in details. Section 5 presents our
experimental evaluation. Section 6 describes related work.
Finally, Section 7 gives some concluding remarks.

2 The MLCA

The MLCA [1] is a novel 2-level hierarchical architecture,
aimed at parallel SOCs and primarily intended for multime-
dia applications. The lower level consists of multiple pro-
cessing units (PUs), and the upper level of a controller that
automatically exploits parallelism among coarse-grain units
of computation, or tasks. A PU can be a full-fledged pro-
cessor core, a DSP, a block of FPGA, or any other type of
programmable hardware. The top-level controller consists
of a control processor (CP), a task dispatcher (TD), and a
universal register file (URF). A dedicated interconnection
network links the PUs to the URF and to shared memory, as
shown in Figure 1(a).

The novelty of the MLCA stems from the fact that the
upper level of the hierarchy supports parallel execution of
tasks, using the same techniques used in superscalar pro-
cessors, such as register renaming and out-of-order execu-
tion. This leverages existing processor technology to ex-
ploit task-level parallelism across PUs, in addition to possi-
ble instruction-level parallelism within each task. The simi-
larity of the MLCA to the microarchitecture of a superscalar

Control Processor

Task Dispatcher

PU PUPUMemory
Universal
Register

File

Interconnection Network

(a) MLCA.

Fetch & Decode

Instruction Queue

XU XUXUMemory
General
Purpose
Registers

Execution

Units

Interconnection Network

(b) Superscalar processor.

Figure 1. Comparison between the MLCA and a superscalar
processor.

processor can be seen in Figure 1.
The MLCA supports a programming model that, sim-

ilar to sequential programming, does not require program-
mers to specify task synchronization and inter-task commu-
nication. It only requires programmers to express an ap-
plication in terms of a sequential control program, which
contains task instructions, and a set of task functions, each
a sequential function with a specified number of input and
output URF registers.

The CP executes a control program, fetching and de-
coding task instructions, each of which specifies a task func-
tion to be executed on a PU, as well as the inputs and outputs
of the task as registers in the URF. Data dependences among
task instructions are detected by identifying the source and
sink registers in the URF, in the same way that dependences
among instructions are detected in a superscalar processor.
The CP renames URF registers as necessary to break false
dependences among task instructions. Based on the depen-
dences that occur at run-time, tasks can be issued out of or-
der, and may also complete and commit their outputs out
of order. There is also a set of control registers in the CP,
which can be written to by task instructions. Logic opera-
tions (and, or) on the control registers are possible. In this
paper, the task functions are assumed to be written in C, and
the control program is expressed in a C-like language called
Sarek [1].

An example of a control program is shown in Fig-
ure 2(a). It shows a single loop, executing four task instruc-

while(cont & 0x02)
{
TaskA(in R1, out R2, out R3);

TaskB(in R2, in R3, out R4);

TaskC(in R1, out R2, out R3);

cont = TaskD(in R3, out R4);
}

(a) Original code.

while(cont & 0x02)
{
TaskA(in R1, out R2, out R3);

TaskB(in R2, in R3, out R101);

TaskC(in R1, out R102, out R103);

cont = TaskD(in R103, out R104);
}

(b) After register renaming.

Figure 2. An example of control program and register re-
naming.

tions: TaskA, TaskB, TaskC, and TaskD. The type of
access for each register is indicated as read in or write out
next to the variable name that represents a URF register.
TaskD writes to the control variable cont that represents
a control register, and the while-loop checks this variable.

The tasks in the above example must be executed se-
quentially. This is because of the flow dependences between
TaskA and TaskB and between TaskC and TaskD; be-
cause of the false output dependences between TaskA and
TaskC, and between TaskB and TaskD; and because of
the false anti dependence between TaskB and TaskC. The
CP renames registers at run-time to break false dependences
and thus allow some parallel execution. The control pro-
gram after register renaming is shown in Figure2(b)1. With
both false dependences eliminated, TaskC can be executed
in parallel with TaskA and TaskB. Further, after TaskC
writes its outputs, TaskD can proceed regardless of the sta-
tus of TaskA and TaskB.

3 The Need for Compiler Support

The MLCA is targeted towards multimedia and streaming
applications, which often apply computations to streams of
data stored in memory buffers. In general, these applica-
tions tend to be modular, have relatively simple control flow,
and use simple data structures, mostly C-structures and ar-
rays [2, 3]. These structures and arrays are used as buffers to
store the intermediate results of computation between con-
secutive stages of an application. Data exchange among
these stages is accomplished by passing pointers to these
buffers to functions. Such characteristics make it simple to
generate an MLCA program for an application: the func-
tions of the application are made into tasks, and function

1Register renaming is actually performed on the assembled machine
code.

arguments are placed into URF registers to facilitate inter-
task communication. Our compiler support is intended for
applications already ported to the MLCA in this way, ei-
ther manually by a programmer or through an automatic task
generator [4].

In the MLCA programming model, tasks can com-
municate through the URF and/or through shared memory.
URF communication is desirable for primitive data (such as
integers, floats, etc.). On the other hand, shared memory
communication is more desirable for aggregate data (such
as buffers and structures). In this case, a pointer to data in
shared memory is communicated through the URF, allowing
different tasks to access the shared data.

Communication through the URF enables the MLCA
hardware to eliminate false dependences by applying re-
naming. This is illustrated in Figure 3(a), which shows a
control program with scalar URF arguments only. The re-
naming hardware enforces the flow dependences between
TaskA and TaskB, and between TaskC and TaskD. It
also breaks the false output dependence between TaskA
and TaskC and the false anti-dependence between TaskB
and TaskC, allowing each pair of tasks to execute in paral-
lel.

However, communication through shared memory can
result in synchronization and renaming problems, which re-
quire compiler support. The synchronization problem re-
sults from the fact that dependences among tasks caused
by accesses to memory are not necessarily reflected by the
dependences among pointers to memory in task arguments.
This is illustrated in Figure 3(b), in which the scalar argu-
ment in Figure 3(a) are replaced by a pointer variable. Since
none of the tasks write the value of ptr itself, ptr is passed
as an in argument to all tasks. However, this causes the CP
to assume that all tasks may run in parallel with one another,
violating the dependences that exist.

One approach to prevent the violation of these depen-
dences is to make in pointer arguments also out argu-
ments, which is illustrated in Figure 3(c). Although the
value of ptr is not modified inside any of the tasks, it is
written back to the URF when each task is complete, en-
suring correct execution. Regrettably, this approach results
in unnecessary serialization of tasks because the in and
out ptr argument introduces a flow dependence between
TaskB and TaskC, which does not exist in the example
control program of Figure 3(a) that uses scalar arguments.
Indeed, making pointer arguments both in and out in-
troduces dependences that not only cover dependences that
exist in the program, but also introduces additional depen-
dences that limit parallelism.

The renaming problem is caused by the fact that the
CP only renames URF registers, but not shared memory,
rendering it unable to break false dependences caused by
accesses to memory. This is illustrated in Figure 3(d),
which shows the earlier example control program with ad-
ditional arguments used to enforce only the flow depen-
dences that exist between TaskA and TaskB and be-
tween TaskC and TaskD. The output dependence be-

tween TaskA and TaskC and the anti dependence between
TaskB and TaskC are neither detected nor resolved by the
CP, resulting in incorrect execution. Additional task argu-
ments are not helpful since the CP would rename these argu-
ments and not the data in memory (although task arguments
may be used to enforce the anti dependence, as shown in
Figure 3(c), but this limits parallelism).

In conclusion, MLCA programs ported as described at
the beginning of this section are likely to use pointers as task
arguments, and thus will likely exhibit little or no speedup
with increasing number of processors. Compiler support is
needed to address this problem.

4 The Transformations

We design code transformations in order to solve the renam-
ing and synchronization problems in the MLCA programs
and, thus, to improve performance. These transformations
are parameter deaggregation, buffer privatization and buffer
renaming. They take as input a control program and the cor-
responding task functions and produce optimized versions
of the corresponding programs.

4.1 Parameter Deaggregation

Parameter deaggregation aims to solve the renaming and
synchronization problems, specifically for structures stored
in shared memory. It achieves this by exposing the fields of
structures in the parameter list of tasks, effectively trans-
forming shared memory dependences into URF depen-
dences. This enables the CP to enforce true dependences
and to rename the fields of the structures, now that they are
in the URF, eliminating false dependences.

Parameter deaggregation is performed by replacing
pointers to structures by the fields of the structures, until all
task parameters are of primitive types (e.g., int, float,
int *, etc.). Exposing all the fields of a structure as in
and out arguments of tasks can result in unnecessary de-
pendences that limit parallelism. Therefore, we employ use-
def data flow analysis [5] to ensure that a field of a structure
is made an in argument only if it is used (before being writ-
ten) by the task. Similarly, a field of a structure is made an
out argument only if it is written to in the body of the task.
This way, tasks do not have as input any field that they do
not use and, similarly, they do not have any field as output
that they do not define.

Three special cases are handled by parameter deaggre-
gation. First, since structures may contain other structures
or pointers to other structures in shared memory, parameter
deaggregation is applied recursively. However, the trans-
formation is not applied to recursive data structures such as
linked lists and trees since the depth of these structures can-
not be determined at compile-time. Second, if a structure is
allocated in a task function, all the fields of the structure are
made output arguments of this task, irrespective of whether
they are defined in the task or not. Similarly, if a structure is

//Writes the value of data
TaskA(out data);

//Reads the value of data
TaskB(in data);

//Writes the value of data
TaskC(out data);

//Reads the value of data
TaskD(in data);

(a) URF communication.

//Writes the value of *ptr
TaskA(in ptr);

//Reads the value of *ptr
TaskB(in ptr);

//Writes the value of *ptr
TaskC(in ptr);

//Reads the value of *ptr
TaskD(in ptr);

(b) Shared memory communication.

//Writes the value of *ptr
TaskA(in ptr, out ptr);

//Reads the value of *ptr
TaskB(in ptr1, out ptr);

//Writes the value of *ptr
TaskC(in ptr, out ptr);

//Reads the value of *ptr
TaskD(in ptr, out ptr);

(c) Over synchronization.

//Writes the value of *ptr
TaskA(in ptr, out sync);

//Reads the value of *ptr
TaskB(in ptr, in sync);

//Writes the value of *ptr
TaskC(in ptr, out sync);

//Reads the value of *ptr
TaskD(in ptr, in sync);

(d) Lack of renaming.

Figure 3. Example illustrating the synchronization and renaming problems in control programs.

//Creates str, str->s and str->buf
TaskA(out str);

//Uses str->s->b and defines str->a
TaskB(in str, out str);

//Defines str->a and str->buf[0:19]
TaskC(in str, out str);

//Destroys str, str->s and str->buf
TaskD(in str);

(a) Input control program.

TaskA(out str, out str_a, out str_buf,
out str_s, out str_s_b);

TaskB(in str_s_b, out str_a);

TaskC(in str_buf, out str_a, out str_buf);

TaskD(in str, in str_a, in str_buf,
in str_s, in str_s_b);

(b) Output control program.

Figure 4. Parameter deaggregation example.

deallocated in a task function, all the fields of the structure
are made input arguments of this task. This is to ensure that
no task accesses a field of a structure before its allocation
and no task accesses a field of a structure after its dealloca-
tion, and thus to ensure the proper synchronization of tasks.
Third, if a section of buffer buf, which is a field of a struc-
ture, is defined and/or used in a task, buf is made both input
and output arguments of the task. This is to serialize tasks
that access the buffer. The unnecessary dependences caused
by the possibly unnecessary out arguments are eliminated
by buffer renaming, as will be described in Section 4.3.

Figure 4 depicts an example of parameter deaggrega-
tion for the parameter str, which points to a structure in
memory. This structure contains an integer a, a pointer
buf to a buffer, and a pointer s to another structure. That
structure in turn contains an integer b. For illustration pur-
poses, accesses by each task to the sections of buffers and
to the fields of structures are indicated in the comments.
Since hardware renaming is ineffective, as described in the
previous section, str is declared both input and output to
TaskB and to TaskC to ensure synchronization.

The resulting control program after parameter deag-
gregation is shown in Figure 4(b). In this control program,
the CP can rename the str a register variable (which cor-
responds to a structure field), eliminating the false depen-

dence between TaskB and TaskC, allowing them to exe-
cute in parallel. Furthermore, TaskB, TaskC and TaskD
will not start executing until TaskA completes execution,
maintaining correct execution.

4.2 Buffer Privatization

Buffer privatization aims to solve the renaming problem in
control programs, specifically for buffers stored in shared
memory. It eliminates shared memory false dependences
between collections of tasks, caused by the accesses to the
same buffers, enabling the parallel execution of these tasks.
This is achieved by creating additional storage for those
buffers whose accesses give rise to false dependences.

Buffer privatization is performed by considering a col-
lection of tasks T1, T2, ..., Tn that access a memory buffer
buf. This collection is divided into disjoint data access
sets: S1, S2, ..., Sk, such that each set accesses the same
data in buf. Thus, if a task Ti that uses data stored in buf
belongs to an access set Si, then all tasks that possibly de-
fine the same data in buf also belong to Si

2. A single pri-
vate memory buffer (with the same size as buf) is created
for each data access set. Accesses to buf in the set are re-
placed by accesses to this private buffer. An Init task is
inserted before the first task in the set to create the private
buffer. Similarly, a Finish task is inserted after the tasks
complete their execution to destroy the buffer. As the result,
tasks in each set access a different buffer in memory.

Buffer privatization is legal only when no flow depen-
dences are violated. Given the definition of a data access set,
flow dependences can be violated only if the tasks of a data
access set are inside a loop, and loop-carried dependences
exist [6]. Therefore, buffer privatization is legal when no
loop carried dependences exist among tasks in the same data
access set.

Buffer privatization is illustrated by the example in
Figure 5.The control program in Figure 5(a) has four tasks:
TaskA, TaskB, TaskC and TaskD that access a buffer
buf. buf is both input and output to the tasks in or-
der to prevent data dependence violations. Since the tasks
of the control program access the same addresses in buf,
false dependences serialize the execution of the tasks. The

2This is analogous to registers webs used in the context of optimizing
compilers [5].

//Defines buf[0:9]
TaskA(in buf, out buf);

//Uses buf[0:9]
TaskB(in buf, out buf);

//Defines buf[0:9]
TaskC(in buf, out buf);

//Uses buf[0:9]
TaskD(in buf, out buf);

(a) Before buffer privatization.

//Creates a private buffer
Init(out priv1);

//Defines priv1[0:9]
TaskA(in priv1, out priv1);

//Uses priv1[0:9]
TaskB(in priv1, out priv1);

//Destroys the private buffer
Finish(in priv1);

//Creates a private buffer
Init(out priv2);

//Defines priv2[0:9]
TaskC(in priv2, out priv2);

//Uses priv2[0:9]
TaskD(in priv2, out priv2);

//Destroys the private buffer
Finish(in priv2);

(b) After buffer privatization.

Figure 5. An example of buffer privatization.

tasks that access buf can be divided into two data ac-
cess sets S1 = {TaskA, TaskB} and S2 = {TaskC,
TaskD} according to the data they access in buf. TaskB
is in the set S1 with TaskA because it uses the data de-
fined in TaskA. Similarly, TaskC and TaskD form the
set S2. Buffer privatization creates a private buffer for each
data access set with Init tasks, breaking the false depen-
dences between TaskB and TaskC and between TaskA
and TaskC. Consequently, the tasks in the two sets can ex-
ecute in parallel. Since the parallelism is obtained between
distinct data access sets in the body of the program, we re-
fer to this kind of parallelism as body-level parallelism. The
resulting control program is depicted in Figure 5(b).

Figure 6 depicts another scenario for buffer privatiza-
tion. In this control program, there are three data access
sets; S1 = {TaskA, TaskB}, S2 = {TaskC, TaskD}
and S3 = {TaskE, TaskF}. Creating private buffers
for each data access set is legal because no loop-carried
dependences exists among the tasks of the sets. This
exposes body-level parallelism between tasks in S1, S2 and
S3. Furthermore, since the Init task for S2 is inserted
inside the loop, a private buffer priv2 is created in every
iteration of the loop. When the CP renames priv2 in
each iteration of the loop, it will rename it along with
the corresponding private buffer in the shared memory.
Consequently, tasks of S2 are assigned a private copy of
buf in every iteration of the loop, resolving loop-carried
false dependences and enabling parallel execution of task
instances in different iterations of the loop.

//Creates a private buffer
Init(out priv1);

//Defines priv1[0:9]
TaskA(in priv1, out priv1);

//Uses priv1[0:9]
TaskB(in priv1, out priv1);

//Destroys priv1
Finish(in priv1);

while(...)
{
//Creates a private buffer
Init(out priv2);

//Defines priv2[0:9]
TaskC(in priv2, out priv2);

//Uses priv2[0:9]
TaskD(in priv2, out priv2);

//Destroys priv2
Finish(in priv2);

//Creates a private buffer
Init(out priv3);

//Defines priv3[0:9]
TaskE(in priv3, out priv3);

//Uses priv3[0:9]
TaskF(in priv3, out priv3);

//Destroys priv3
Finish(in priv3);

}

Figure 6. Loop-level parallelism with buffer privatization.

Buffer privatization is similar to array privatization [7],
which is used by parallelizing compilers to enable the par-
allel execution of loop iterations. However, buffer privati-
zation extends array privatization in that: (1) it enables the
parallel execution of tasks without enclosing loops, (2) it
enables the parallel execution of tasks within a loop itera-
tion in addition to among loop iterations, and (3) it relies
on the hardware register-renaming of the MLCA to allocate
extra registers to hold pointers to private buffers. This is il-
lustrated in Figure 5, in which the control program has no
loops, and in Figure 6, in which parallelism exists among
the iterations of the loop as well as between tasks in a single
iteration.

Buffer privatization has overhead that is introduced by
the additional Init and Finish tasks. Therefore, it is
prudent not to apply privatization unless parallel execution
can result. Figure 7 illustrates this with some examples. In
Figure 7(a), tasks TaskA and TaskB form a data access
set. Similarly, TaskC and TaskD are in another set. How-
ever, tasks in the two sets cannot execute in parallel because
of the true dependence between TaskB and TaskC caused
by the accesses to the URF scalar variable sum. Thus, these
two data access sets are merged to form a single data access
set, effectively privatizing the buffer only once inside the
loop. In Figure 7(b), since the tasks of the two data access
sets are accessing different regions of the same buffer, no
false dependence exists among these tasks. Thus, creating
separate private buffers for both data access sets is unneces-
sary. Finally, in Figure 7(c), the accesses to the URF vari-
able sum causes a loop carried dependence between TaskB
and TaskA, and, thus, prevents parallel execution. Thus,
privatization is not performed for this data access set.

while(...)
{
//Defines buf[0:9]
TaskA(in buf, out buf);

//Uses buf[0:9]
TaskB(in buf, out buf,

out sum);

//Defines buf[0:9]
TaskC(in buf, in sum,

out buf);

//Uses buf[0:9]
TaskD(in buf, out buf);

}

(a) True dependence.

while(...)
{
//Defines buf[0:9]
TaskA(in buf, out buf);

//Uses buf[0:9]
TaskB(in buf, out buf);

//Defines buf[10:19]
TaskC(in buf, out buf);

//Uses buf[10:19]
TaskD(in buf, out buf);

}

(b) No false dependence.

while(...)
{
//Defines buf[0:9]
TaskA(in buf, in sum,

out buf);

//Uses buf[0:9]
TaskB(in buf, out buf,

out sum);
}

(c) Loop-carried dependence.

Figure 7. Examples of situations in which buffer privatization is not profitable.

//Reads from buffer
Read_Data1(in buff, out buff);

//Reads from buffer
Read_Data2(in buff, out buff);

//Writes to buffer
Write_Data(in buff, out buff);

(a) Before buffer renaming.

//Reads from buffer
Read_Data1(in buff, out sync);

//Reads from buffer
Read_Data2(in buff, out buff);

//Writes to buffer
Write_Data(in buff, out buff, in sync);

(b) After buffer renaming.

Figure 8. Buffer renaming example.

4.3 Buffer Renaming

Buffer renaming addresses the synchronization problem in
control programs. More specifically, this transformation re-
names pointer task arguments to remove dependences in-
troduced by programmers to ensure proper synchronization
of tasks, as was explained in Section 3. One example of
such dependences are ones introduced by making all point-
ers both in and out arguments to tasks (see Figure 3(c)).
We refer to a task argument which appears as an output argu-
ment only to synchronize tasks as a synchronization output
argument, or SOA. The goal of buffer renaming is to remove
dependences caused by SOAs.

Figure 8 illustrates buffer renaming with an exam-
ple. The tasks Read Data1 and Read Data2 can exe-
cute in parallel, but they do not because buf is made an in
and out argument in every task to ensure proper synchro-
nization of the two tasks with Write Data. This makes
buff a SOA. Buffer renaming renames this SOA in task
Read Data1 with a register variable sync, which is also
made an in argument to Write Data. This allows the par-
allel execution of Read Data1 and Read Data2 while
properly synchronizing the two tasks with Write Data.

Buffer renaming is performed in four steps [6]. First,

array section analysis [5] is performed for each of the task
functions to obtain sections of buffers accessed by each task.
Second, section data flow [6] and URF scalar data flow anal-
yses are performed on the control program to determine all
pairs of tasks that can execute in parallel, and all pairs of
tasks that must serialize. Third, task pairs that are serialized
because of SOAs are identified. Fourth, for these tasks the
SOAs are renamed to eliminate the dependences caused by
them, and new synchronization dependences are created to
reflect only the dependences caused by the data accesses in
the program. The details of buffer renaming appear in [6].

5 Experimental Evaluation

In this section we present our experimental evaluation of
the proposed transformations implemented in a prototype
compiler, using three realistic multimedia applications and
a simulator of the MLCA.

5.1 The MLCA Compiler

The overall structure of the MLCA Compiler prototype is
shown in Figure 9. It takes as input a control program and
a set of task functions. It applies the transformations de-
scribed in this paper to produce an optimized control pro-
gram and a set of optimized task functions. The proto-
type consists of two sub-compilers: a C compiler and a
Sarek compiler. The C compiler analyzes the task func-
tions, and applies inter-procedural array section analysis and
inter-procedural data flow analysis on structure fields. The
results of these analyses are reflected as annotations in the
task functions. The annotated task functions along with the
control program are given to the Sarek compiler, which uses
the annotations in the task functions to apply our transfor-
mations.

A pragma-based API is also used to allow program-
mers to modify and/or add annotations to the task functions.
These pragmas give the Sarek compiler accurate buffer sec-
tion definition/use and structure fields definition/use infor-
mation and can be obtained by manually inspecting the code
of the application.

In our prototype implementation, the Open Research

Task
Functions

C
Compiler

Control
Program

Annotated
Task

Functions

Sarek
Compiler Modified

Task Functions

Optimized
Control Program

User
Pragmas

Figure 9. The structure of the MLCA Compiler prototype.

Compiler (ORC) [8] is used as the infrastructure of both the
C and Sarek compilers.

5.2 Methodology

A simulator of the MLCA is used to measure and report per-
formance. The simulator is written with C++/SystemC and
reflects the overall structure of the MLCA. The interconnect
among the PUs and memory adds a constant delay, and the
memory model implements a simple contention mechanism,
where the requests are enqueued in order and dequeued at a
given rate. The simulator models the URF contention in a
similar way. The simulator uses ARM processors for PUs,
and tasks are compiled for ARM using the Linux-to-ARM
cross-compiler 3.2.2 version of GNU’s GCC using the -O2
optimization level.

We report the performance of the applications using
the speedup. However, since it is not possible to run a purely
sequential program on the MLCA, we report the speedup of
a MLCA program relative to two versions. The first is the
baseline version of the program, in which the control pro-
gram consists of a single task call to the main function of
the program. This is the simplest version of an application
that can run in MLCA and contains no parallelism. The
speedup reported using the baseline version of the program
is referred to as the baseline speedup. The second version
is the parallel MLCA program running on a single proces-
sor, and the speedup reported with respect to this version is
referred to as the relative speedup. Thus, baseline speedup
takes into account all the factors affecting performance, such
as task issue costs, and the MLCA architectural parameters.
In contrast, the relative speedup reflects only the impact of
the code transformations on performance.

We use three realistic multimedia applications as
benchmarks to evaluate the effectiveness of our transfor-
mations: MAD, an open source MPEG audio decoder [9],
FMR, an open-source program that performs FM demodu-
lation on a 16-bit input data stream [9], and GSM, an open
source implementation of the European GSM 06.10 provi-
sional standard for full-rate speech transcoding [10]. These
applications had already been manually ported and hand-
optimized for the MLCA. We use these ported versions as
reference, but we start from the sequential code of each ap-
plication. The un-optimized versions of the applications (i.e.
inputs to our compiler) are generated from the sequential
code by making top-level functions of each application as
tasks. Arguments of these functions are made in arguments
and their return values are made out arguments. Further,

global variables are transformed to in arguments when they
are used in a function and to out arguments when they are
defined in a function. Finally, pointer arguments are made
both in and out arguments to ensure correctness, as was
explained in Section 3. Tasks are then split into smaller ones
by looking at the top level functions and applying the above
process again. This is then repeated until the set of tasks
that exist in the manually ported versions of each applica-
tion is obtained, which provides us with un-optimized, but
otherwise the same, versions of the applications. Given how
the arguments to tasks are generated in the above process,
it is natural that there is very little or no parallelism in the
un-optimized versions of the applications.

5.3 Overall Performance

Figure 10 shows the baseline and relative speedups for each
of the three benchmarks. The speedups are shown for ver-
sions of the benchmarks that have been manually ported and
optimized for the MLCA, as well as for versions for which
the code transformations have been applied by our com-
piler. These versions are referred to as manually-optimized
(MO) and compiler-optimized (CO), respectively. In CO
versions, buffer sections and structure fields access infor-
mation is provided manually to the Sarek compiler through
the pragmas API. Thus, the results reflect the performance
of the MLCA compiler with perfect task analysis results.

The figure shows that the manually-optimized ver-
sions of the applications exhibit scaling speedups, indicat-
ing the effectiveness of the MLCA in improving perfor-
mance. Further, the figure indicates that the compiler gen-
erates code that exhibits performance similar to that of the
manually-optimized versions of the applications. This in-
dicates that the transformations are successful at improving
performance.

The overheads of the transformations are also mini-
mal; the baseline speedup of the applications is less than
1 at one processor, but not significantly, except for MAD.
These overheads are further explored in Section 5.5.

5.4 Code Transformations

We experiment with four different versions of each applica-
tion in order to study the impact of each of the code trans-
formations. OPT0 is the version in which all the code trans-
formations are disabled; this is effectively the un-optimized
version re-generated by our compiler. OPT1 is the version
to which only parameter deaggregation is applied. OPT2 ap-
plies parameter deaggregation and buffer privatization. Fi-
nally, OPT3 is the version to which all the code transfor-
mations are applied, and, thus, is the same as the compiler-
optimized version. Figure 11 shows the execution cycles on
8 processors of each version, normalized with respect to the
OPT0 version.

The figure shows that parameter deaggregation has no
impact on the execution cycles of FMR, because FMR does
not use any structures. On the other hand, it speeds up

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 4 6 8

Processors

Sp
ee

du
p

compiler-relative

compiler-base

manual-relative

manual-base

(a) MAD.

0

1

2

3

4

5

6

7

8

1 2 4 6 8

Processors

Sp
ee

du
p

compiler-relative

compiler-base

manual-relative

manual-base

(b) FMR.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 4 6 8

Processors

Sp
ee

du
p

compiler-relative

compiler-base

manual-relative

manual-base

(c) GSM.

Figure 10. The baseline and relative speedups of each of the benchmark programs, for both manual and automatic application
of the transformations.

10
0.

0

10
0.

0

10
0.

0

90
.7

10
0.

0

97
.0

64
.2

23
.4

66
.5

27
.1

23
.4 26

.8

0

20

40

60

80

100

120

MAD FMR GSM

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 C

yc
le

s

OPT0 OPT1 OPT2 OPT3

Figure 11. The effect of the code transformations on the
total execution cycles.

MAD by 9.3% and GSM by 3%. Further, deaggregation
opens up more opportunities for the buffer transformations,
by extracting buffers inside structures. Buffer privatization
reduces the execution cycles by 26.5% in MAD, 76.6% in
FMR and 30.5% in GSM after parameter deaggregation is
applied. These improvements are due to 18 buffers priva-
tized in MAD, 21 buffers privatized in FMR and 15 buffers
privatized in GSM. Buffer renaming improves the perfor-
mance of MAD by 37.1% and the performance of GSM
by 39.7%. These improvements are due to a large num-
ber of tasks that access different sections of a buffer. Thus,
all three transformations are effective in improving perfor-
mance when applicable.

5.5 Transformation Overheads

In order to evaluate the overhead of our transformations, we
measure the difference between the total execution cycles
of OPT0 and OPT3 versions obtained with one processor.
We find that, normalized with respect to their baseline ver-
sions, 10.6%, 0.5% and 2.7% overheads are introduced by
our transformations to MAD, FMR and GSM applications

respectively. The causes of these overheads are the addi-
tional Init and Finish task calls introduced by buffer
privatization and the increased number of task arguments in-
troduced by parameter deaggregation and buffer renaming.

5.6 The ORC Compiler

We enhanced the ORC infrastructure to perform array sec-
tion analysis for pointer function arguments and data flow
analysis for structure fields [6]. In order to assess the abil-
ity of this enhanced infrastructure in performing the anal-
yses necessary for our transformations, we generate three
versions of each application. The PRAGMA1 is a version in
which all buffer sections and structure fields definitions/uses
are generated by ORC. The PRAGMA2 is a version in which
only buffer sections for buffers defined inside structures are
provided manually. In addition, since the ORC array section
analysis is flow-insensitive, manual pragmas are inserted to
prevent buffer sections to be conservatively marked as used,
when sections of a buffer are only defined. Finally, the
PRAGMA3 is a version in which all the buffer section and
structure fields definition/use pragmas are provided manu-
ally. This version is the same as the CO version described
earlier.

Figure 12 depicts the execution cycles on 8 proces-
sor for each version compared to the un-optimized version
(OPT0). The figure shows that for MAD and GSM applica-
tions, speedups of 9.3% and 3.0% are respectively obtained
with the PRAGMA1 versions. These speedups are due to
the accurate structure fields data-flow analysis performed by
ORC, enabling only parameter deaggregation. Further, the
PRAGMA1 version of FMR exhibits 43.5% of performance
improvement compared to the un-optimized version. This
shows that ORC is able to accurately generate some of the
buffer sections required for the transformations. However,
there also exist sections that are estimated conservatively,
preventing buffer privatization and buffer renaming from be-
ing applied in some cases.

10
0.

0

10
0.

0

10
0.

0

90
.7

56
.5

97
.0

27
.1

25
.0

66
.2

27
.1

23
.4 26

.8

0

20

40

60

80

100

120

MAD FMR GSM

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 C

yc
le

s

OPT0 PRAGMA1 PRAGMA2 PRAGMA3

Figure 12. The effect of compiler pragmas on the total exe-
cution cycles.

On the other hand, since the majority of the buffers
are defined within structures and excessive pointer arith-
metic is used to access the buffers of the MAD and GSM
applications, the array section analysis of the ORC is un-
able to provide the MLCA Compiler with accurate buffer
sections. Consequently, buffer privatization and buffer re-
naming could not be applied. However, when the buffer sec-
tions are provided manually for the buffers in structures and
for flow-insensitive sections performance improves signifi-
cantly for MAD and GSM, as indicated by the PRAGMA2
version. The additional improvements of the PRAGMA3
version for GSM is caused by a large number of buffers for
which the sections are only predicted conservatively by the
ORC. This is due to, again, the excessive pointer arithmetic
usage in GSM.

These results show that ORC is generally able to pro-
vide the analyses needed for our transformations, with two
exceptions: sections of buffers defined within structures and
flow-sensitive section usage. We believe these exceptions
can be easily handled within the framework of ORC to en-
able the full automation of the transformations.

6 Related Work

Our transformations build on and extend compiler transfor-
mations proposed in the literature for extracting loop-level
parallelism and for locality enhancement [7, 11, 12]. Specif-
ically, our transformations extract parallelism at coarser
grain (tasks vs. loop iterations) and they require no loops.
When loops are present, our transformations can extract par-
allelism both within and across loop iterations, thus extend-
ing previous work.

Chilimbi et al. [11] proposes structure splitting, which
is analogous to our parameter deaggregation transforma-
tion, for the purpose of increasing cache locality. They
identify infrequently accessed structure/object fields and ex-
tract/move them from the structure/object. In contrast, we
segregate all structure fields into scalars to enhance par-
allelism, and also apply the transformation recursively to
maximize parallelism.

Array privatization [7, 13] is an optimization technique
to improve loop-level parallelism in programs, and is em-
ployed in many parallelizing compilers [14, 15] and pro-
gramming interfaces [16]. Our buffer privatization bears
similarities to array privatization, but differs in the granu-
larity of parallelism. Array privatization privatizes arrays
for entire loop iterations, while buffer privatization priva-
tizes buffers for sets of tasks, irrespective of whether they
are enclosed by a loop or not, and not necessarily for an
entire loop iteration. This enables buffer privatization to ex-
tract more parallelism, since each buffer may be privatized
several times in a single loop iteration, resulting in paral-
lelism within a single iteration of a loop. The differences
make buffer privatization unique in its design and applica-
tion to MLCA programs.Furthermore, buffer privatization
relies on the MLCA renaming hardware to simplify code
generation [6].

Our buffer renaming transformation aims to remove
unnecessary synchronization arguments, thus increasing
parallelism. There has been considerable work on removing
unnecessary synchronization in parallel programs, for ex-
ample for removing synchronization in Java programs [17,
18, 19]. These works aim to remove synchronization primi-
tives that do not contribute to the correct execution of a pro-
gram (e.g. nested synchronization). In contrast, our work
detects superfluous variables (i.e. SOAs) used by program-
mers to synchronize parallel tasks and removes them when
they limit potential parallelism.

In our annotations, we use representations of array sec-
tions similar to simple sections proposed by Balasundaram
and Kennedy [20]. Further, we employ an interprocedural
section dataflow analysis to determine buffer sections used
by tasks. This analysis is done by ORC and is similar to
those given in [21, 22, 23]. We use these sections to deter-
mine dependences among tasks using similar algorithms to
the ones used by Li et al. [24, 25].

7 Concluding Remarks

In this paper, we described the compilation environment
designed to improve the performance of MLCA pro-
grams. The compilation environment enhances parallelism
in MLCA programs by applying three simple code trans-
formations.These transformations are based on known com-
piler analyses and eliminate the synchronization and renam-
ing problems in MLCA programs caused by the use of point-
ers to shared memory in task arguments. An API was also
provided by the compilation environment to allow program-
mers to provide high-level data usage information, which
can reasonably be obtained from an application’s code.

We evaluated the MLCA and its compilation environ-
ment using three real multimedia applications and a sim-
ulator of the MLCA. Our evaluation indicates that scaling
performance can be obtained when applications are hand-
ported and optimized. Further, the performance of the
MLCA programs ported using the compilation environment
is comparable to that of the hand-optimized applications,

when array access information is available for the tasks. Fi-
nally, inter-procedural array section analysis applied by the
ORC is too conservative and does not produce perfect buffer
sections in some applications. Thus, programmer effort in
porting applications to the MLCA can be further reduced
when this analysis in ORC is improved.

Future work includes improving the precision of array
section analysis in ORC, evaluation with more industrial-
strength multimedia applications, and integration with the
automatic task generation phase already in progress [4].

References

[1] F. Karim, A. Mellan, A. Nguyen, U. Aydonat, and
T. Abdelrahman, “A multi-level computing architec-
ture for multimedia applications,” IEEE Micro, vol. 24,
no. 3, pp. 55–66, 2004.

[2] C. Lee, M. Potkonjak, and H. Mangione-Smith, “Me-
diabench: A tool for evaluating and synthesizing mul-
timedia and communicatons systems,” in Proc. of the
Int’l Symposium on Microarchitecture, pp. 330–335,
1997.

[3] C. E. Kozyrakis and D. A. Patterson, “A new direction
for computer architecture research,” IEEE Computer,
vol. 31, no. 11, pp. 24–32, 1998.

[4] K. Stewart, “Automatic task formation techniques for
the MLCA,” Master’s thesis, Department of Electri-
cal and Computer Engineering, University of Toronto,
2006.

[5] S. Muchnick, Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann, 1997.

[6] U. Aydonat, “Compiler support for a multimedia
system-on-chip architecture,” Master’s thesis, Depart-
ment of Electrical and Computer Engineering, Univer-
sity of Toronto, 2005.

[7] P. Tu, Automatic Array Privatization and Demand
Driven Symbolic Analysis. PhD thesis, Department
of Computer Science, University of Illinois at Urbana-
Champaign, 1995.

[8] The ORC Compiler. http://ipf-orc.
sourceforge.net.

[9] A. Mellan, Personal communication. 2003.

[10] The MediaBench. http://cares.icsl.ucla.
edu/MediaBench/applications.html.

[11] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-
conscious structure definition,” in Proc. of the ACM
SIGPLAN Conf. on Prog. Lang. Design and Implemen-
tation, pp. 13–24, 1999.

[12] R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua,
“Experience in the automatic parallelization of four
Perfect-benchmark programs,” in Proc. of the Work-
shop on Prog. Lang. and Compilers for Parallel Com-
puting, pp. 65–83, 1991.

[13] Z. Li, “Array privatization for parallel execution of
loops,” in Proc. of the ACM Int’l Conf. on Supercom-
puting, pp. 313–322, ACM Press, 1992.

[14] T. P. C. Forum, “PCF parallel Fortran extensions,”
SIGPLAN Fortran Forum, vol. 10, no. 3, pp. 1–57,
1991.

[15] L. J. Toomey, E. C. Plachy, R. G. Scarborough, R. J.
Sahulka, and J. F. Shaw, “IBM parallel Fortran,” IBM
Systems Journal, vol. 27, no. 4, pp. 416–435, 1988.

[16] The OpenMP. http://www.openmp.org.

[17] J. Bogda and U. Hözle, “Removing unnecessary syn-
chronization in Java,” in Proc. of the ACM SIG-
PLAN Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 35–46, ACM
Press, 1999.

[18] M. Stoodley and V. Sundaresan, “Automatically reduc-
ing repetitive synchronization with a just-in-time com-
piler for Java,” in Proc. of the Int’l Symposium on Code
Generation and Optimization, pp. 27–36, IEEE Com-
puter Society, 2005.

[19] E. Ruf, “Effective synchronization removal for Java,”
in Proc. of the ACM SIGPLAN Conf. on Prog. Lang.
Design and Implementation, pp. 208–218, ACM Press,
2000.

[20] V. Balasundaram and K. Kennedy, “A technique for
summarizing data access and its use in parallelism en-
hancing transformations,” in Proc. of the ACM SIG-
PLAN Conf. on Prog. Lang. Design and Implementa-
tion, pp. 41–53, 1989.

[21] R. Rugina and M. Rinard, “Symbolic bounds analysis
of pointers, array indices, and accessed memory re-
gions,” in Proc. of the ACM SIGPLAN Conf. on Prog.
language design and implementation, pp. 182–195,
ACM Press, 2000.

[22] B. Creusillet and F. Irigoin, “Interprocedural array re-
gion analyses,” in Int’l Workshop on Languages and
Compilers for Parallel Computing, pp. 4–1 to 4–15,
August 1995.

[23] Y. Paek, J. Hoeflinger, and D. Padua, “Simplification
of array access patterns for compiler optimizations,”
in Proc. of the ACM SIGPLAN Conf. on Prog. lang.
design and implementation, pp. 60–71, ACM Press,
1998.

[24] J. Gu and Z. Li, “Efficient interprocedural array data-
flow analysis for automatic program parallelization,”
IEEE Trans. Softw. Eng., vol. 26, no. 3, pp. 244–261,
2000.

[25] J. Gu, Z. Li, and G. Lee, “Symbolic array dataflow
analysis for array privatization and program paral-
lelization,” in Proc. of ACM/IEEE Conf. on Supercom-
puting, p. 47, December 1995.

